x=-3:.1:3; k=-2:2; for n=1:5 y(:,n)=k(n)-x; end plot(x,y) title('muestra de x+y=k')
t=0:pi/40:2*pi; for k=1:5 x(:,k)= k*cos(t); y(:,k)=k*sin(t); end plot(x,y) title('muestra de x^2+y^2=k^2') axis equal
x=-3:.1:3 ; k=-2:2; for n=1:5 y(n,:)=k(n)*x; end plot(x,y) title('muestra de y=kx')
x=-3:.1:3 ; k=-4:2:4; for n=1:5 y(n,:)=k(n)+x.^2; end plot(x,y) title('muestra de y=k+x^2')
Superficie a. | Superficie b. |
![]() |
![]() |
Superficie c. | Superficie d. |
![]() |
![]() |
Superficie e. | Superficie f. |
![]() |
![]() |
Superficie g. | Superficie h. |
![]() |
![]() |
Curvas de nivel:
Curvas de nivel 1 | Curvas de nivel 2 |
![]() |
![]() |
Curvas de nivel 3 | Curvas de nivel 4 |
![]() |
![]() |
Curvas de nivel 5 | Curvas de nivel 6 |
![]() |
![]() |
Curvas de nivel 7 | Curvas de nivel 8 |
![]() |
![]() |
[X,Y]=meshgrid(-2:.1:2); Z=X.^2+Y.^2; subplot(1,2,1) contour3(X,Y,Z,15) surface(X,Y,Z,'EdgeColor',[.9 .9 .9],'FaceColor','none') hold on plot3(1,-1,2,'*') xlabel('x');ylabel('y');zlabel('z'); grid off hold off subplot(1,2,2) contour(X,Y,Z,15) hold on plot(1,-1,'or') xlabel('x');ylabel('y'); hold off axis equal
[X,Y]=meshgrid(1,-1:.1:1); Z=exp(X+Y); plot3(X,Y,Z)Si quisiéramos dibujar las curvas intersección de $z=e^{x+y}$ con los planos $x=-3$, $x=-2$, $x=-1$, $x=0$, $x=1$, $x=2$ y $x=3$, pondríamos
[X,Y]=meshgrid(-3:3,-1:.1:1); Z=exp(X+Y); plot3(X,Y,Z)
[X,Y]=meshgrid(-3:3,-3:.1:3); Z=4-(X.^2+Y.^2); plot3(X,Y,Z) xlabel('x');ylabel('y');zlabel('z'); set(gca,'XTick',-3:3) grid on
[X,Y]=meshgrid(-3/2:1/2:3/2,-3/2:.1:3/2); Z=sqrt(4-(X.^2+Y.^2)); plot3(X,Y,Z) xlabel('x');ylabel('y');zlabel('z'); set(gca,'XTick',-3/2:1/2:3/2) grid on axis equal
[X,Y]=meshgrid(-2:2,-2:.05:2); Z=cos(sqrt(X.^2+Y.^2)); plot3(X,Y,Z) xlabel('x');ylabel('y');zlabel('z'); set(gca,'XTick',-2:2) grid on axis equal
[X,Y]=meshgrid(-1:1,-2:.05:2); Z=3*(X.^2+Y.^2).*exp(-X.^2-Y.^2); plot3(X,Y,Z) xlabel('x');ylabel('y');zlabel('z'); set(gca,'XTick',-1:1) grid on axis equal
[X,Y]=meshgrid(-3:.1:3,-3:3); Z=4-(2*X.^2+Y.^2); plot3(X',Y',Z') xlabel('x');ylabel('y');zlabel('z'); set(gca,'YTick',-3:3) grid on
[X,Y]=meshgrid(-sqrt(2):.1:sqrt(2),-3/2:1/2:3/2); Z=sqrt(4-(2*X.^2+Y.^2)); plot3(X',Y',Z') xlabel('x');ylabel('y');zlabel('z'); set(gca,'YTick',-3/2:1/2:3/2) grid on axis equal
[X,Y]=meshgrid(-3:.1:3,-3:3); Z=4-3*X+2*Y; plot3(X',Y',Z') xlabel('x');ylabel('y');zlabel('z'); set(gca,'YTick',-3:3) grid on
[X,Y]=meshgrid(-2:.05:2,-2:2); Z=6*Y.^3.*exp(-X.^2-Y.^2); plot3(X',Y',Z') xlabel('x');ylabel('y');zlabel('z'); set(gca,'YTick',-2:2) grid on axis equal
[X,Y]=meshgrid(-2:2,0:2); Z=1+X-Y; surface(X,Y,Z,'EdgeColor',[.5 .5 .5],'FaceColor','none') [X,Y]=meshgrid(-2:2,1); Z=1+X-Y; hold on plot3(X,Y,Z,'LineWidth',1.2) plot3(0,1,0,'o') [X,Z]=meshgrid(-2:2,-4:2:4); surface(X,ones(size(X)),Z,'EdgeColor',[1 .2 .2],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); hold off
[X,Y]=meshgrid(1:3,-2:2); Z=1+X-Y; surface(X,Y,Z,'EdgeColor',[.5 .5 .5],'FaceColor','none') [X,Y]=meshgrid(2,-2:2); Z=1+X-Y; hold on plot3(X,Y,Z,'LineWidth',1.2) plot3(2,0,3,'o') [Y,Z]=meshgrid(-2:2,-2:2:6); surface(2*ones(size(Y)),Y,Z,'EdgeColor',[1 .2 .2],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); hold off
[X,Y]=meshgrid(-1:.1:2,0:.1:2); Z=2+X.^2+Y.^2; surface(X,Y,Z,'EdgeColor',[.7 .7 .7],'FaceColor','none') [X,Y]=meshgrid(-1:.1:2,1); Z=2+X.^2+Y.^2; hold on plot3(X,Y,Z,'LineWidth',1.2) plot3(1,1,4,'o') [X,Z]=meshgrid(-1:2,2:2:10); surface(X,ones(size(X)),Z,'EdgeColor',[1 .5 .2],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); grid on view([150 18]) hold off
[X,Y]=meshgrid(1:.1:3,-2:.1:2); Z=2+X.^2+Y.^2; surface(X,Y,Z,'EdgeColor',[.5 .5 .5],'FaceColor','none') [X,Y]=meshgrid(2,-2:.1:2); Z=2+X.^2+Y.^2; hold on plot3(X,Y,Z,'LineWidth',1.2) plot3(2,0,6,'o') [Y,Z]=meshgrid(-2:2,-2:5:16); surface(2*ones(size(Y)),Y,Z,'EdgeColor',[1 .2 .2],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); grid on hold off
[X,Y]=meshgrid(-1:.1:1,1:.1:3); Z=sqrt(X.^2+Y.^2-1); surface(X,Y,Z,'EdgeColor',[.7 .7 .7],'FaceColor','none') [X,Y]=meshgrid(-1:.1:1,2); Z=sqrt(X.^2+Y.^2-1); hold on plot3(X,Y,Z,'LineWidth',1.2) plot3(0,2,sqrt(3),'o') [X,Z]=meshgrid(-1:1,0:3); surface(X,2*ones(size(X)),Z,'EdgeColor',[1 .2 .2],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); grid on view([150 18]) hold off
[X,Y]=meshgrid(1:.1:2,-1:.1:1); Z=sqrt(X.^2+Y.^2-1); surface(X,Y,Z,'EdgeColor',[.7 .7 .7],'FaceColor','none') [X,Y]=meshgrid(1,-1:.1:1); Z=sqrt(X.^2+Y.^2-1); hold on plot3(X,Y,Z,'LineWidth',1.2) plot3(1,1,1,'o') [Y,Z]=meshgrid(-1:.5:1,0:.5:2); surface(ones(size(Y)),Y,Z,'EdgeColor',[1 .2 .2],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); grid on view([151 32]) axis equal hold off
[X,Y]=meshgrid(0:.1:1.5); Z=(X-1).^2+Y.^2; surface(X,Y,Z,'EdgeColor',[0.6 1 1],'FaceColor','none') hold on Z=(X.^2+Y.^2)/2; surface(X,Y,Z,'EdgeColor',[1 .6 1],'FaceColor','none') [X,Y]=meshgrid(0:.1:1.5,1); Z=(X-1).^2+Y.^2; plot3(X,Y,Z,'c','LineWidth',1.2) Z=(X.^2+Y.^2)/2; plot3(X,Y,Z,'m','LineWidth',1.2) plot3(1,1,1,'o') [X,Z]=meshgrid(0:.5:1.5,0:.5:3); surface(X,ones(size(X)),Z,'EdgeColor',[0.5 0.5 1],'FaceColor','none') xlabel('x');ylabel('y');zlabel('z'); grid on view([29 30]) axis equal hold off
a=[pi/5 11*pi/12 7*pi/6]; compass([2*cos(a) 3*cos(a) 4*cos(a)], [2*sin(a) 3*sin(a) 4*sin(a)])
Norte: $(0,1)$ | ||||
Noroeste: $(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ | Noreste: $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ | |||
Oeste: $(-1,0)$ | Este: $(1,0)$ | |||
Suroeste: $(\frac{-\sqrt{2}}{2},\frac{-\sqrt{2}}{2})$ | Sureste:$(\frac{\sqrt{2}}{2},\frac{-\sqrt{2}}{2})$ | |||
Sur: $(0,-1)$ |
angulos=0:pi/4:7*pi/4; compass(cos(angulos),sin(angulos))o bien
angulos=0:pi/4:7*pi/4; [x,y]=pol2cart(angulos,ones(1,8)); % transforma coordenadas polares a cartesianas compass(x,y)
angulos=0:pi/4:7*pi/4; [x,y]=pol2cart(angulos,ones(1,8)); sym([2,1]*[x;y])En la siguiente figura puedes ver una porción de la superficie $f(x,y)=x^2y$, cuyo gradiente es $(2xy,x^2)$ y las curvas, en azul, intersección de la superficie con los planos verticales en las direcciones en las que se han calculado las derivadas direccionales:
[R,T]=meshgrid(0:.1:1.8,0:pi/20:pi/2); Z=sqrt(4-R.^2); surface(R.*cos(T),R.*sin(T),Z) shading interp alpha(.6) hold on plot3(1,1,sqrt(2),'*m') quiver3([1 1],[1,1],[sqrt(2) sqrt(2)],[1 0],[0 1],[-1/sqrt(2) -1/sqrt(2)]) xlabel('x');ylabel('y');zlabel('z'); view([55 18]) grid on hold off
[R,T]=meshgrid(0:.1:1.8,0:pi/20:pi); Z=-R; surface(R.*cos(T),R.*sin(T),Z) shading interp alpha(.6) hold on plot3(0,1,-1,'*m') quiver3([0 0],[1,1],[-1 -1],[1 0],[0 1],[0 -1]) xlabel('x');ylabel('y');zlabel('z'); view([115 26]) axis equal grid on hold off
[X,Y]=meshgrid(0:.1:2,-2:.1:0); Z=3*Y.^2; surface(X,Y,Z) shading interp alpha(.6) hold on plot3(1,-1,3,'*m') quiver3([1 1],[-1,-1],[3 3],[1 0],[0 1],[0 -6]) xlabel('x');ylabel('y');zlabel('z'); view([113 16]) grid on hold off
[X,Y]=meshgrid(0:.1:1,-.5:.1:.5); Z=2-X.^3; surface(X,Y,Z) shading interp alpha(.6) hold on plot3(.5,0,15/8,'*m') quiver3([.5 .5],[0 0],[15/8 15/8],[1 0],[0 1],[-3/4 0]) xlabel('x');ylabel('y');zlabel('z'); view([55 18]) grid on hold off
[X,Z]=meshgrid(-2:.1:2,1:.1:3); Y=2-X.^2; surface(X,Y,Z) shading interp alpha(.6) hold on plot3(1,1,2,'*m') quiver3([1 1],[1 1],[2 2],[1 0],[-2 0],[0 1]) xlabel('x');ylabel('y');zlabel('z'); view([55 18]) grid on hold off
[X,Z]=meshgrid(1:.1:3); Y=sqrt(9-X.^2); surface(X,Y,Z) shading interp alpha(.6) hold on plot3(2,sqrt(5),2,'*m') quiver3(2*[1 1],sqrt(5)*[1 1],2*[1 1],[1 0],[-2/sqrt(5) 0],[0 1]) xlabel('x');ylabel('y');zlabel('z'); view([75 18]) grid on hold off
[Y,Z]=meshgrid(0:.1:pi,1:.1:3); X=Z.*cos(Y); surface(X,Y,Z) shading interp alpha(.6) hold on plot3(0,pi/2,2,'*m') quiver3([0 0],(pi/2)*[1 1],[2 2],[-2 0],[1 0],[0 1]) xlabel('x');ylabel('y');zlabel('z'); view([33 10]) grid on hold off
[Y,Z]=meshgrid(-1:.1:1,-2:.1:0); X=Z.*exp(-Y)/2; surface(X,Y,Z) shading interp alpha(.6) hold on plot3(-.5,0,-1,'*m') quiver3(-.5*[1 1],[0 0],-[1 1],.5*[1 1],[1 0],[0 1]) xlabel('x');ylabel('y');zlabel('z'); view([59 24]) grid on hold off
x=-1:.1:1; y=-sqrt(1-x.^2)/2; plot(x,y) % arco de la curva hold on a=sqrt(3)/2; plot(a,-1/4,'*') % punto quiver(a*ones(1,5),-ones(1,5)/4,[2*a 2*a -3 -a 1],[2 -2 1 1 -2*a]) % los cinco vectores hold off
Superficie a. | Superficie b. |
![]() |
![]() |
Superficie c. | Superficie d. |
![]() |
![]() |
Superficie e. | Superficie f. |
![]() |
![]() |
Muestras de gradientes:
Gradiente 1. | Gradiente 2. |
![]() |
![]() |
Gradiente 3. | Gradiente 4. |
![]() |
![]() |
Gradiente 5. | Gradiente 6. |
![]() |
![]() |
[R,T]=meshgrid(0:.05:1,0:pi/50:2*pi); surf(R.*cos(T),R.*sin(T),R.^3.*abs(cos(T)).*sin(T).^2) shading interp xlabel('x');ylabel('y')La figura anterior muestra la función temperatura en los puntos de $D$. Si lo que queremos es dibujar la placa coloreada según su temperatura, basta que veamos la gráfica anterior desde arriba; para ello añadimos al código anterior las líneas
view([0,90]) axis equal