x=-3:.1:3;
k=-2:2;
for n=1:5
y(:,n)=k(n)-x;
end
plot(x,y)
title('muestra de x+y=k')
t=0:pi/40:2*pi;
for k=1:5
x(:,k)= k*cos(t);
y(:,k)=k*sin(t);
end
plot(x,y)
title('muestra de x^2+y^2=k^2')
axis equal
x=-3:.1:3 ;
k=-2:2;
for n=1:5
y(n,:)=k(n)*x;
end
plot(x,y)
title('muestra de y=kx')
x=-3:.1:3 ;
k=-4:2:4;
for n=1:5
y(n,:)=k(n)+x.^2;
end
plot(x,y)
title('muestra de y=k+x^2')
| Superficie a. | Superficie b. |
|
|
| Superficie c. | Superficie d. |
|
|
| Superficie e. | Superficie f. |
|
|
| Superficie g. | Superficie h. |
|
|
Curvas de nivel:
| Curvas de nivel 1 | Curvas de nivel 2 |
|
|
| Curvas de nivel 3 | Curvas de nivel 4 |
|
|
| Curvas de nivel 5 | Curvas de nivel 6 |
|
|
| Curvas de nivel 7 | Curvas de nivel 8 |
|
|
[X,Y]=meshgrid(-2:.1:2);
Z=X.^2+Y.^2;
subplot(1,2,1)
contour3(X,Y,Z,15)
surface(X,Y,Z,'EdgeColor',[.9 .9 .9],'FaceColor','none')
hold on
plot3(1,-1,2,'*')
xlabel('x');ylabel('y');zlabel('z');
grid off
hold off
subplot(1,2,2)
contour(X,Y,Z,15)
hold on
plot(1,-1,'or')
xlabel('x');ylabel('y');
hold off
axis equal
[X,Y]=meshgrid(1,-1:.1:1); Z=exp(X+Y); plot3(X,Y,Z)Si quisiéramos dibujar las curvas intersección de $z=e^{x+y}$ con los planos $x=-3$, $x=-2$, $x=-1$, $x=0$, $x=1$, $x=2$ y $x=3$, pondríamos
[X,Y]=meshgrid(-3:3,-1:.1:1); Z=exp(X+Y); plot3(X,Y,Z)
[X,Y]=meshgrid(-3:3,-3:.1:3);
Z=4-(X.^2+Y.^2);
plot3(X,Y,Z)
xlabel('x');ylabel('y');zlabel('z');
set(gca,'XTick',-3:3)
grid on
[X,Y]=meshgrid(-3/2:1/2:3/2,-3/2:.1:3/2);
Z=sqrt(4-(X.^2+Y.^2));
plot3(X,Y,Z)
xlabel('x');ylabel('y');zlabel('z');
set(gca,'XTick',-3/2:1/2:3/2)
grid on
axis equal
[X,Y]=meshgrid(-2:2,-2:.05:2);
Z=cos(sqrt(X.^2+Y.^2));
plot3(X,Y,Z)
xlabel('x');ylabel('y');zlabel('z');
set(gca,'XTick',-2:2)
grid on
axis equal
[X,Y]=meshgrid(-1:1,-2:.05:2);
Z=3*(X.^2+Y.^2).*exp(-X.^2-Y.^2);
plot3(X,Y,Z)
xlabel('x');ylabel('y');zlabel('z');
set(gca,'XTick',-1:1)
grid on
axis equal
[X,Y]=meshgrid(-3:.1:3,-3:3);
Z=4-(2*X.^2+Y.^2);
plot3(X',Y',Z')
xlabel('x');ylabel('y');zlabel('z');
set(gca,'YTick',-3:3)
grid on
[X,Y]=meshgrid(-sqrt(2):.1:sqrt(2),-3/2:1/2:3/2);
Z=sqrt(4-(2*X.^2+Y.^2));
plot3(X',Y',Z')
xlabel('x');ylabel('y');zlabel('z');
set(gca,'YTick',-3/2:1/2:3/2)
grid on
axis equal
[X,Y]=meshgrid(-3:.1:3,-3:3);
Z=4-3*X+2*Y;
plot3(X',Y',Z')
xlabel('x');ylabel('y');zlabel('z');
set(gca,'YTick',-3:3)
grid on
[X,Y]=meshgrid(-2:.05:2,-2:2);
Z=6*Y.^3.*exp(-X.^2-Y.^2);
plot3(X',Y',Z')
xlabel('x');ylabel('y');zlabel('z');
set(gca,'YTick',-2:2)
grid on
axis equal
[X,Y]=meshgrid(-2:2,0:2);
Z=1+X-Y;
surface(X,Y,Z,'EdgeColor',[.5 .5 .5],'FaceColor','none')
[X,Y]=meshgrid(-2:2,1);
Z=1+X-Y;
hold on
plot3(X,Y,Z,'LineWidth',1.2)
plot3(0,1,0,'o')
[X,Z]=meshgrid(-2:2,-4:2:4);
surface(X,ones(size(X)),Z,'EdgeColor',[1 .2 .2],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
hold off
[X,Y]=meshgrid(1:3,-2:2);
Z=1+X-Y;
surface(X,Y,Z,'EdgeColor',[.5 .5 .5],'FaceColor','none')
[X,Y]=meshgrid(2,-2:2);
Z=1+X-Y;
hold on
plot3(X,Y,Z,'LineWidth',1.2)
plot3(2,0,3,'o')
[Y,Z]=meshgrid(-2:2,-2:2:6);
surface(2*ones(size(Y)),Y,Z,'EdgeColor',[1 .2 .2],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
hold off
[X,Y]=meshgrid(-1:.1:2,0:.1:2);
Z=2+X.^2+Y.^2;
surface(X,Y,Z,'EdgeColor',[.7 .7 .7],'FaceColor','none')
[X,Y]=meshgrid(-1:.1:2,1);
Z=2+X.^2+Y.^2;
hold on
plot3(X,Y,Z,'LineWidth',1.2)
plot3(1,1,4,'o')
[X,Z]=meshgrid(-1:2,2:2:10);
surface(X,ones(size(X)),Z,'EdgeColor',[1 .5 .2],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
grid on
view([150 18])
hold off
[X,Y]=meshgrid(1:.1:3,-2:.1:2);
Z=2+X.^2+Y.^2;
surface(X,Y,Z,'EdgeColor',[.5 .5 .5],'FaceColor','none')
[X,Y]=meshgrid(2,-2:.1:2);
Z=2+X.^2+Y.^2;
hold on
plot3(X,Y,Z,'LineWidth',1.2)
plot3(2,0,6,'o')
[Y,Z]=meshgrid(-2:2,-2:5:16);
surface(2*ones(size(Y)),Y,Z,'EdgeColor',[1 .2 .2],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
grid on
hold off
[X,Y]=meshgrid(-1:.1:1,1:.1:3);
Z=sqrt(X.^2+Y.^2-1);
surface(X,Y,Z,'EdgeColor',[.7 .7 .7],'FaceColor','none')
[X,Y]=meshgrid(-1:.1:1,2);
Z=sqrt(X.^2+Y.^2-1);
hold on
plot3(X,Y,Z,'LineWidth',1.2)
plot3(0,2,sqrt(3),'o')
[X,Z]=meshgrid(-1:1,0:3);
surface(X,2*ones(size(X)),Z,'EdgeColor',[1 .2 .2],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
grid on
view([150 18])
hold off
[X,Y]=meshgrid(1:.1:2,-1:.1:1);
Z=sqrt(X.^2+Y.^2-1);
surface(X,Y,Z,'EdgeColor',[.7 .7 .7],'FaceColor','none')
[X,Y]=meshgrid(1,-1:.1:1);
Z=sqrt(X.^2+Y.^2-1);
hold on
plot3(X,Y,Z,'LineWidth',1.2)
plot3(1,1,1,'o')
[Y,Z]=meshgrid(-1:.5:1,0:.5:2);
surface(ones(size(Y)),Y,Z,'EdgeColor',[1 .2 .2],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
grid on
view([151 32])
axis equal
hold off
[X,Y]=meshgrid(0:.1:1.5);
Z=(X-1).^2+Y.^2;
surface(X,Y,Z,'EdgeColor',[0.6 1 1],'FaceColor','none')
hold on
Z=(X.^2+Y.^2)/2;
surface(X,Y,Z,'EdgeColor',[1 .6 1],'FaceColor','none')
[X,Y]=meshgrid(0:.1:1.5,1);
Z=(X-1).^2+Y.^2;
plot3(X,Y,Z,'c','LineWidth',1.2)
Z=(X.^2+Y.^2)/2;
plot3(X,Y,Z,'m','LineWidth',1.2)
plot3(1,1,1,'o')
[X,Z]=meshgrid(0:.5:1.5,0:.5:3);
surface(X,ones(size(X)),Z,'EdgeColor',[0.5 0.5 1],'FaceColor','none')
xlabel('x');ylabel('y');zlabel('z');
grid on
view([29 30])
axis equal
hold off
a=[pi/5 11*pi/12 7*pi/6]; compass([2*cos(a) 3*cos(a) 4*cos(a)], [2*sin(a) 3*sin(a) 4*sin(a)])
| Norte: $(0,1)$ | ||||
| Noroeste: $(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ | Noreste: $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ | |||
| Oeste: $(-1,0)$ | Este: $(1,0)$ | |||
| Suroeste: $(\frac{-\sqrt{2}}{2},\frac{-\sqrt{2}}{2})$ | Sureste:$(\frac{\sqrt{2}}{2},\frac{-\sqrt{2}}{2})$ | |||
| Sur: $(0,-1)$ |
angulos=0:pi/4:7*pi/4; compass(cos(angulos),sin(angulos))o bien
angulos=0:pi/4:7*pi/4; [x,y]=pol2cart(angulos,ones(1,8)); % transforma coordenadas polares a cartesianas compass(x,y)
angulos=0:pi/4:7*pi/4; [x,y]=pol2cart(angulos,ones(1,8)); sym([2,1]*[x;y])En la siguiente figura puedes ver una porción de la superficie $f(x,y)=x^2y$, cuyo gradiente es $(2xy,x^2)$ y las curvas, en azul, intersección de la superficie con los planos verticales en las direcciones en las que se han calculado las derivadas direccionales:
[R,T]=meshgrid(0:.1:1.8,0:pi/20:pi/2);
Z=sqrt(4-R.^2);
surface(R.*cos(T),R.*sin(T),Z)
shading interp
alpha(.6)
hold on
plot3(1,1,sqrt(2),'*m')
quiver3([1 1],[1,1],[sqrt(2) sqrt(2)],[1 0],[0 1],[-1/sqrt(2) -1/sqrt(2)])
xlabel('x');ylabel('y');zlabel('z');
view([55 18])
grid on
hold off
[R,T]=meshgrid(0:.1:1.8,0:pi/20:pi);
Z=-R;
surface(R.*cos(T),R.*sin(T),Z)
shading interp
alpha(.6)
hold on
plot3(0,1,-1,'*m')
quiver3([0 0],[1,1],[-1 -1],[1 0],[0 1],[0 -1])
xlabel('x');ylabel('y');zlabel('z');
view([115 26])
axis equal
grid on
hold off
[X,Y]=meshgrid(0:.1:2,-2:.1:0);
Z=3*Y.^2;
surface(X,Y,Z)
shading interp
alpha(.6)
hold on
plot3(1,-1,3,'*m')
quiver3([1 1],[-1,-1],[3 3],[1 0],[0 1],[0 -6])
xlabel('x');ylabel('y');zlabel('z');
view([113 16])
grid on
hold off
[X,Y]=meshgrid(0:.1:1,-.5:.1:.5);
Z=2-X.^3;
surface(X,Y,Z)
shading interp
alpha(.6)
hold on
plot3(.5,0,15/8,'*m')
quiver3([.5 .5],[0 0],[15/8 15/8],[1 0],[0 1],[-3/4 0])
xlabel('x');ylabel('y');zlabel('z');
view([55 18])
grid on
hold off
[X,Z]=meshgrid(-2:.1:2,1:.1:3);
Y=2-X.^2;
surface(X,Y,Z)
shading interp
alpha(.6)
hold on
plot3(1,1,2,'*m')
quiver3([1 1],[1 1],[2 2],[1 0],[-2 0],[0 1])
xlabel('x');ylabel('y');zlabel('z');
view([55 18])
grid on
hold off
[X,Z]=meshgrid(1:.1:3);
Y=sqrt(9-X.^2);
surface(X,Y,Z)
shading interp
alpha(.6)
hold on
plot3(2,sqrt(5),2,'*m')
quiver3(2*[1 1],sqrt(5)*[1 1],2*[1 1],[1 0],[-2/sqrt(5) 0],[0 1])
xlabel('x');ylabel('y');zlabel('z');
view([75 18])
grid on
hold off
[Y,Z]=meshgrid(0:.1:pi,1:.1:3);
X=Z.*cos(Y);
surface(X,Y,Z)
shading interp
alpha(.6)
hold on
plot3(0,pi/2,2,'*m')
quiver3([0 0],(pi/2)*[1 1],[2 2],[-2 0],[1 0],[0 1])
xlabel('x');ylabel('y');zlabel('z');
view([33 10])
grid on
hold off
[Y,Z]=meshgrid(-1:.1:1,-2:.1:0);
X=Z.*exp(-Y)/2;
surface(X,Y,Z)
shading interp
alpha(.6)
hold on
plot3(-.5,0,-1,'*m')
quiver3(-.5*[1 1],[0 0],-[1 1],.5*[1 1],[1 0],[0 1])
xlabel('x');ylabel('y');zlabel('z');
view([59 24])
grid on
hold off
x=-1:.1:1; y=-sqrt(1-x.^2)/2; plot(x,y) % arco de la curva hold on a=sqrt(3)/2; plot(a,-1/4,'*') % punto quiver(a*ones(1,5),-ones(1,5)/4,[2*a 2*a -3 -a 1],[2 -2 1 1 -2*a]) % los cinco vectores hold off
| Superficie a. | Superficie b. |
|
|
| Superficie c. | Superficie d. |
|
|
| Superficie e. | Superficie f. |
|
|
Muestras de gradientes:
| Gradiente 1. | Gradiente 2. |
|
|
| Gradiente 3. | Gradiente 4. |
|
|
| Gradiente 5. | Gradiente 6. |
|
|
[R,T]=meshgrid(0:.05:1,0:pi/50:2*pi);
surf(R.*cos(T),R.*sin(T),R.^3.*abs(cos(T)).*sin(T).^2)
shading interp
xlabel('x');ylabel('y')
La figura anterior muestra la función temperatura en los puntos de $D$. Si lo que queremos es dibujar la placa coloreada según su temperatura, basta que veamos la gráfica anterior desde arriba; para ello añadimos al código anterior las líneas
view([0,90]) axis equal